Alon Sela
  • Main
  • Articles  
    • Probability
    • Quantitative Finance
    • MSc. Thesis Proposal by Alon Sela
  • videos
  • Literature
  • Courses  
    • Option Pricing App
  • About
  • Contact Me
     
    Alon Sela
      • Main
      • Articles  
        • Probability
        • Quantitative Finance
        • MSc. Thesis Proposal by Alon Sela
      • videos
      • Literature
      • Courses  
        • Option Pricing App
      • About
      • Contact Me

      videos


      • Master Class by ALON SELA
      • Probability Foundation
      • Probability & Stochastics for Finance
      • Measure Theory
      •  

        Building a Black Scholes Calculator in Python

      •  

        Mod-01 Lec-01 INTRODUCTION

        Probability Foundation for Electrical Engineers by Dr. Krishna Jagannathan,Department of Electrical Engineering,IIT Madras.

      •  

        Mod-01 Lec-02 CARDINALITY AND COUNTABILITY-1

      •  

        Mod-01 Lec-03 CARDINALITY AND COUNTABILITY-2

      •  

        Mod-01 Lec-04 PROBABILITY SPACES-1

      •  

        Mod-01 Lec-05 PROBABILITY SPACES-2

      •  

        Mod-01 Lec-06 PROPERTIES OF PROBABILITY MEASURES

      •  

        Mod-01 Lec-07 DISCRETE PROBABILITY SPACES

      •  

        Mod-01 Lec-08 GENERATED Σ-ALGEBRA, BOREL SETS

      •  

        Mod-01 Lec-09 BOREL SETS AND LEBESGUE MEASURE-1

      •  

        Mod-01 Lec-10 BOREL SETS AND LEBESGUE MEASURE-2

      •  

        Mod-01 Lec-11 THE INFINITE COIN TOSS MODEL

      •  

        Mod-01 Lec-12 CONDITIONAL PROBABILITY AND INDEPENDENCE

      •  

        Mod-01 Lec-13 INDEPENDENCE CONTD.

      •  

        Mod-01 Lec-14 THE BOREL-CANTELLI LEMMAS

      •  

        Mod-01 Lec-15 RANDOM VARIABLES

      •  

        Mod-01 Lec-16 CUMULATIVE DISTRIBUTION FUNCTION

      •  

        Mod-01 Lec-17 TYPES OF RANDOM VARIABLES

      •  

        Mod-01 Lec-18 CONTINUOUS RANDOM VARIABLES

      •  

        Mod-01 Lec-19 CONTINUOUS RANDOM VARIABLES (CONTD.) AND SINGULAR RANDOM VARIABLES

      •  

        Mod-01 Lec-20 SEVERAL RANDOM VARIABLES

      •  

        Mod-01 Lec-21 INDEPENDENT RANDOM VARIABLES-1

      •  

        Mod-01 Lec-22 INDEPENDENT RANDOM VARIABES-2

      •  

        Mod-01 Lec-23 JOINTLY CONTINUOUS RANDOM VARIABLES

      •  

        Mod-01 Lec-24 TRANSFORMATION OF RANDOM VARIABLES-1

      •  

        Mod-01 Lec-25 TRANSFORMATION OF RANDOM VARIABLES-2

      •  

        Mod-01 Lec-26 TRANSFORMATION OF RANDOM VARIABLES-3

      •  

        Mod-01 Lec-27 TRANSFORMATION OF RANDOM VARIABLES-4

      •  

        Mod-01 Lec-28 INTEGRATION AND EXPECTATION-1

      •  

        Mod-01 Lec-29 INTEGRATION AND EXPECTATION-2

      •  

        Mod-01 Lec-30 PROPERTIES OF INTEGRALS

      •  

        Mod-01 Lec-31 MONOTONE CONVERGENCE THEOREM

      •  

        Mod-01 Lec-32 EXPECTATION OF DICRETE RANDOM VARIABLES, EXPECTATION OVER DIFFERENT SPACES

      •  

        Mod-01 Lec-33 EXPECTATION OF DICRETE RANDOM VARIABLES

      •  

        Mod-01 Lec-34 FATOU’S LEMMA & DOMINATED CONVERGENCE THEOREM

      •  

        Mod-01 Lec-35 VARIANCE AND COVARIANCE

      •  

        Mod-01 Lec-36 COVARIANCE, CORRELATION COEFFICIENT

      •  

        Mod-01 Lec-37 CONDITIONAL EXPECTATION

      •  

        Mod-01 Lec-38 MMSE ESTIMATOR, TRANSFORMS

      •  

        Mod-01 Lec-39 MOMENT GENERATING FUNCTION

      •  

        Mod-01 Lec-40 CHARACTERISTIC FUNCTION – 1

      •  

        Mod-01 Lec-41 CHARACTERISTIC FUNCTION – 2

      •  

        Mod-01 Lec-42 CONCENTRATION INEQUALITIES

      •  

        Mod-01 Lec-43 CONVERGENCE OF RANDOM VARIABLES – 1

      •  

        Mod-01 Lec-44 CONVERGENCE OF RANDOM VARIABLES – 2

      •  

        Mod-01 Lec-45 CONVERGENCE OF RANDOM VARIABLES – 3

      •  

        Mod-01 Lec-46 CONVERGENCE OF CHARCTERISTIC FUNCTIONS, LIMIT THEOREMS

      •  

        Mod-01 Lec-47 THE LAWS OF LARGE NUMBERS

      •  

        Mod-01 Lec-48 THE CENTRAL LIMIT THEOREM

      •  

        Mod-01 Lec-49 A BRIEF OVERVIEW OF MULTIVARIATE GAUSSIANS

      •  

        Intro

      •  

        Lecture 1 - Basic Probability

      •  

        Lecture 2: Interesting problems in probablity

      •  

        Lecture 3: Random Variables, Distribution Functions & Independence

      •  

        Lecure 4: Cheybyshev Inequality, Borel-Cantelli lemmas & related issues

      •  

        Lecture 5: Law of Large Numbers & Central Limit Theorem

      •  

        Lecture 6 - Conditional Expectation-I

      •  

        Lecture 7 - Conditional Expectation-II

      •  

        Lecture 8 - Martingales

      •  

        Lecture 9 - Brownian Motion-I

      •  

        Lecture 10 - Brownian Motion-II

      •  

        Lecture 11 - Brownian Motion-III

      •  

        Lecture 12 - Ito Integral-I

      •  

        Lecture 13 - Ito Integral-II

      •  

        Lecture 14 - Ito Calculus-I

      •  

        Lecture 15 - Ito Calculus-II

      •  

        Lecture 16 - Ito Integrals in Higher Dimension

      •  

        Lecture 17 - An Application to Ito Integrals I

      •  

        Lecture 18 - An Application to Ito Integral II

      •  

        Lecture 19 - Black Scholes Formula I

      •  

        Lecture 20 - Black Scholes Formula II

      •  

        Lecture 1 - Introduction, Extended Real Numbers

      •  

        Lecture 2 - Introduction, Extended Real Numbers (contd)

      •  

        Lecture 3 - Algebra and Sigma Algebra of Subsets of a Set

      •  

        Lecture 4 - Algebra and Sigma Algebra of Subsets of a Set ( Contd )

      •  

        Lecture 5 - Sigma Algebra generated by a Class

      •  

        Lecture 6 - Sigma Algebra generated by a Class (Contd )

      •  

        Lecture 7 - Monotone Class

      •  

        Lecture 8 - Monotone Class (Contd)

      •  

        Lecture 9 - Set Functions

      •  

        Lecture 10 - Set Functions(Contd)

      •  

        Lecture 11 - The Length Function and its Properties

      •  

        Lecture 12 - The Length Function and its Properties (Contd)

      •  

        Lecture 13 - Countably Additive Set Functions on Intervals

      •  

        Lecture 14 - Countably Additive Set Functions on Intervals (Contd )

      •  

        Lecture 15 - Uniqueness Problem for Measure

      •  

        Lecture 16 - Uniqueness Problem for Measure (Contd)

      •  

        Lecture 17 -Extension of Measure

      •  

        Lecture 18 - Extension of Measure (Contd)

      •  

        Lecture 19 - Outer Measure and its Properties

      •  

        Lecture 20 - Outer Measure and its Properties(Contd)

      •  

        Lecture 21 - Measurable Sets

      •  

        Lecture 22 - Measurable Sets(Contd)

      •  

        Lecture 23 - Lebesgue Measure and its Properties

      •  

        Lecture 24 - Lebesgue Measure and its Properties(Contd)

      •  

        Lecture 25 - Characterization of Lebesgue Measurable Sets

      •  

        Lecture 26 - Characterization of Lebesgue Measurable Sets(Contd)

      •  

        Lecture 27 - Measurable Functions

      •  

        Lecture 28 - Measurable Functions(Contd)

      •  

        Lecture 29 - Properties of Measurable Functions

      •  

        Lecture 30 - Properties of Measurable Functions(Contd)

      •  
      • Main
      • Articles  
        • Probability
        • Quantitative Finance
        • MSc. Thesis Proposal by Alon Sela
      • videos
      • Black-Scholes Formula
      • Literature
      • Courses  
        • Option Pricing App
      • About
      • Contact Me
      Copyright © 2025 All rights reserved - Alon Sela